Improved upper bounds for nearly antipodal chromatic number of paths
نویسندگان
چکیده
For paths Pn, G. Chartrand, L. Nebeský and P. Zhang showed that ac′(Pn) ≤ ( n−2 2 ) +2 for every positive integer n, where ac′(Pn) denotes the nearly antipodal chromatic number of Pn. In this paper we show that ac′(Pn) ≤ ( n−2 2 ) − n2 − b 10 n c + 7 if n is even positive integer and n ≥ 10, and ac′(Pn) ≤ ( n−2 2 ) − n−1 2 − b 13 n c + 8 if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pn.
منابع مشابه
Radio Antipodal Colorings of Graphs
A radio antipodal coloring of a connected graph G with diameter d is an assignment of positive integers to the vertices of G, with x ∈ V (G) assigned c(x), such that d(u, v) + |c(u) − c(v)| d for every two distinct vertices u, v of G, where d(u, v) is the distance between u and v in G. The radio antipodal coloring number ac(c) of a radio antipodal coloring c of G is the maximum color assigned t...
متن کاملOn Radio ( n − 4 ) - chromatic Number of the Path P n
For a path Pn of order n, Chartrand et al. [3] have given an upper bound for radio k-chromatic number when 1 ≤ k ≤ n−1. Liu and Zhu [7] have determined the exact value of radio (n−1)-chromatic number of Pn, namely radio number, rn(Pn), when n ≥ 3. Khennoufa and Togni [5] have given the exact value of radio (n − 2)-chromatic number of Pn, namely antipodal number, ac(Pn), when n ≥ 5. Kola and Pan...
متن کاملImproved Bounds for Radio k-Chromatic Number of Hypercube Qn
A number of graph coloring problems have their roots in a communication problem known as the channel assignment problem. The channel assignment problem is the problem of assigning channels nonnegative integers to the stations in an optimal way such that interference is avoidedas reported by Hale 2005 . Radio k-coloring of a graph is a special type of channel assignment problem. Kchikech et al. ...
متن کاملRadio k-Labelings for Cartesian Products of Graphs
Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that |f(x) ...
متن کاملNEARLY ANTIPODAL CHROMATIC NUMBER ac′(Pn) OF THE PATH Pn
Chartrand et al. (2004) have given an upper bound for the nearly antipodal chromatic number ac′(Pn) as (n−2 2 ) +2 for n > 9 and have found the exact value of ac′(Pn) for n = 5, 6, 7, 8. Here we determine the exact values of ac′(Pn) for n > 8. They are 2p − 6p + 8 for n = 2p and 2p − 4p + 6 for n = 2p + 1. The exact value of the radio antipodal number ac(Pn) for the path Pn of order n has been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 27 شماره
صفحات -
تاریخ انتشار 2007